Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Standard software analytics often involves having a large amount of data with labels in order to commission models with acceptable performance. However, prior work has shown that such require- ments can be expensive, taking several weeks to label thousands of commits, and not always available when traversing new research problems and domains. Unsupervised Learning is a promising di- rection to learn hidden patterns within unlabelled data, which has only been extensively studied in defect prediction. Nevertheless, unsupervised learning can be ineffective by itself and has not been explored in other domains (e.g., static analysis and issue close time). Motivated by this literature gap and technical limitations, we present FRUGAL, a tuned semi-supervised method that builds on a simple optimization scheme that does not require sophisticated (e.g., deep learners) and expensive (e.g., 100% manually labelled data) methods. FRUGAL optimizes the unsupervised learner’s con- figurations (via a simple grid search) while validating our design decision of labelling just 2.5% of the data before prediction. As shown by the experiments of this paper FRUGAL outperforms the state-of-the-art adoptable static code warning recognizer and issue closed time predictor, while reducing the cost of labelling by a factor of 40 (from 100% to 2.5%). Hence we assert that FRUGAL can save considerable effort in data labelling especially in validating prior work or researching new problems. Based on this work, we suggest that proponents of complex and expensive methods should always baseline such methods against simpler and cheaper alternatives. For instance, a semi-supervised learner like FRUGAL can serve as a baseline to the state-of-the-art software analytics.more » « less
-
Modern scientific workflows are data-driven and are often executed on distributed, heterogeneous, high-performance computing infrastructures. Anomalies and failures in the work- flow execution cause loss of scientific productivity and inefficient use of the infrastructure. Hence, detecting, diagnosing, and mitigating these anomalies are immensely important for reliable and performant scientific workflows. Since these workflows rely heavily on high-performance network transfers that require strict QoS constraints, accurately detecting anomalous network perfor- mance is crucial to ensure reliable and efficient workflow execu- tion. To address this challenge, we have developed X-FLASH, a network anomaly detection tool for faulty TCP workflow transfers. X-FLASH incorporates novel hyperparameter tuning and data mining approaches for improving the performance of the machine learning algorithms to accurately classify the anoma- lous TCP packets. X-FLASH leverages XGBoost as an ensemble model and couples XGBoost with a sequential optimizer, FLASH, borrowed from search-based Software Engineering to learn the optimal model parameters. X-FLASH found configurations that outperformed the existing approach up to 28%, 29%, and 40% relatively for F-measure, G-score, and recall in less than 30 evaluations. From (1) large improvement and (2) simple tuning, we recommend future research to have additional tuning study as a new standard, at least in the area of scientific workflow anomaly detection.more » « less
An official website of the United States government
